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Abstract—Obtaining the minimum loading margin is the critical 

factor to determine the boundary of the voltage stability of power 
system. The paper formulates the electric power network equation 
with the status variables being nodal voltages and branch currents. 
The boundary characteristic equation for the saddle node bifurcation, 
which represents the boundary of voltage stability, is built based on 
the derived expression of power flow equilibrium curve in branch 
currents. The steady state boundary conditions for voltage on critical 
voltage circle are given. The equation for the distance between the 
loading point and the bifurcation boundary is found by geometrical 
analysis. This equation represents the shortest distance of the loading 
variation. The distance equation along with the boundary 
characteristic equation serves as an additional set of equations for 
analyzing the minimum loading margin. These equations are solved 
by Newton method which replaces the critical points to avoid the 
sigularity around saddle node bifurcation points. Simulation results 
demonstrate the method’s correctness and effectiveness.  

Keywords—Saddle node bifurcation, loading margin, critical 
point, power flow, power system 

I. INTRODUCTION  
The voltage stability is facing new problems with the 

deepening of the reform of electric power system. The 
uncertainty brings larger impact to power grid along with 
massive renewable energy accessing to the network and the 
scale of the power system’s size became increasingly large as 
the uhv power grid is built. The power systems’ operation has 
become more and more complex which leads to the difficulties 
in control, so the voltage stability problem has become 
increasingly prominent. Furthermore, economic and 
environmental considerations require the existed equipments to 
be fully exploited, which drives the system operating much 
more closer to its limit, especially in the heavily-loaded case. It 
is easier for failures caused by the disturbation to extend in a 
broader scale, even resulting in voltage collapse. Therefore, it 
is desperately necessary to analyze voltage stability, figuring 
out the weakest point of the system’s operation and taking a 
pointed preventing action. 

--------------------- 
The authors are with the Shanghai Dian Ji University, Shanghai, 

China 

Researchers have proposed many ways to evaluate voltage 
stability. The minimum loading margin, whose value is widely 
taken as the effective measure for the steady-state voltage 
stability[1,2], refers to the difference of the load power in current 
condition to that at the operational boundary. It can provide the 
operators a quantitative evaluation for security of the current 
state. At present, the approaches to determine the minimum 
loading margin may be categorized as:  

1) Direct method[3,4]. Given a certain direction in which the 
load increases, the critical point along this direction is obtained 
by continuation power flow or zero eigenvalue method. The 
new direction in which the load increases is determined by the 
left eigenvector corresponding to the zero eigenvalue of 
Jacobian matrix at the critical point. The problem is iteratively 
solved until the direction in which the load increases is close 
enough to that of the left eigenvector at the critical point. 

2) Methods based on optimization[5]. Taking advantage of 
the fact that the vector of the minimal load increasing direction 
is perpendicular to the tangent plane of the corresponding 
critical point, and incorporating this geometric constrain into 
the optimization formulation, the requirements of the critical 
point is transformed to an optimized load problem which is 
solved by Kuhn-Tucker optimal conditions.  

3) Evolutionary methods. The loading margin thus the 
boundary of the voltage stability is determined by either 
Evolutionary Method[6], or Genetic Algorithm or its 
combination with Artificial Neural Network transforming the 
original problem to optimization problem[7,8], or Regression 
Tree together with Artificial Neural Network constructing 
intelligent system and calculating saddle node bifurcation point 
(SNBP)[9]. 

Minimum load margin research is often associated with 
increased transmission capability closely. The decision-trees 
method is used to determine the identification of the critical 
transmission lines and their proper compensation rate, thereby 
increasing the transmission capacity[10]; the maximum active 
power transmission capacity and the critical value are obtained 
by calculating the Jacobian matrix systems and P-V curve, and 
then get the system weak areas through the singular vector and 
V-Q curve analysis[11]; improving grid transmission capacity 
can also use static reactive power compensation device and 
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flexible ac transmission systems, and establish multi-objective 
optimization function to improve the minimum load margin[12]. 

The methods of calculating the minimum load margin 
mentioned above are all based on the numerical solution, rather 
than the analytical method, analytical method can expound the 
essence of voltage instability more clearly on the basis of 
theory. And the existing load power margin is calculated for a 
given load growth direction, get the local optimal solution, if 
you want to calculate the minimum load margin in the global 
scope, also need to study new methods. 

Among the methods above-mentioned, the first one is 
easily trapped into the local minimums; whereas the second 
and the third one are attractive in formulation in determining 
the minimum load increasing direction. However, the solution 
to algorithms themselves is difficult with the high 
computational cost and poor practicability. The minimum static 
loading margin is the shortest distance between current system 
operating point and the boundary. It can be found by 
comparing the values of the loading margin at each node and it 
represents the voltage stability margin of the overall system. 
The key to obtaining the minimum loading margin is to find 
the critical loading point whereas the latter is closely related to 
the calculation of SNBP. 

Bifurcation theory, which studies the relationship between 
the solution of the non-linear system and the parameters, has 
been widely applied to the analysis of power system static 
voltage stability[13,14]. When a power system structure becomes 
unstable, the typical situation is that with the parameters 
variation the equilibrium point and unstable points overlap 
with each other; the Jacobian matrix of the electric power 
network equation is singular, and SNBP appears. Therefore, 
SNBP is a kind of critical status and represents the boundary of 
power system static voltage stability. 

Based on Bifurcation theory, the paper proposes a model 
for solving the minimum static loading margin. Starting from 
the electric power network equations in status of the branch 
current and nodal voltage, the model formulates the explicit 
expression of the equilibrium curve and critical equation for 
saddle node bifurcation which represents the boundary 
condition for voltage stability. On the basis of these, the paper 
derives the distance equation for the minimum loading margin 
and demonstrates that it expresses the shortest distance in terms 
of geometry. 

II. NETWORK REPRESENTATIVES BASED ON NODAL VOLTAGE-
BRANCH EQUATIONS 

Electric power components, such as line or transformer, can 
be modeled as π -equivalent circuits which is shown in Fig. 1. 
Each circuit is composed of 3 branches: an impedance branch 
and two ground-branches.  

In Fig. 1, is  and js  are nodal injected powers with 

iii qps j+=
⋅

, jjj qps j+=
⋅

. Setting the nodal voltages 

as iii feu j+=
⋅

, jjj feu j+=
⋅

 with Nji ∈, , where N  

is the number of buses. The current in the impedance branch is 
r
l

a
ll iii j+=

⋅
 with Ll ∈ , where L  is the number of 

branches. 

Rl+jXl

jBi jBj

i j

Si Sj
Iij

 

Fig. 1. π-Equivalent Circuit. 

For ground-branches, taken the i -th node as an example 
and shown in Fig. 2, the shunt conductance is neglected for 
simplicity. 

jBi

Iij

+
-

 

Fig. 2. Diagram of Grounding Branch 

For each ground-branch, the current divides into two parts: 
one through the branch with earth capacity; the other one 
through the loading branch which holds not only the current of 
this circuit but also the one of the neighboring circuit. Same as 
the basic idea of nodal voltage method, the voltage of the 
equivalent voltage source can be calculated as (e.g., the i -th 
node) 

∑ ∑
∈ ∈

∗

−
−

=

il il
lil

ii
i Bui

qp
u

j
j

                       (1) 

where ii qp j−  is the load power at bus i ; ∑
∈il

li  is the sum 

of currents injecting to bus i ; ∑
∈il

lB  is the sum of shunt 

capacity at bus i ; ∑
∈il

li Buj  is the sum of capacitive current 

from bus i  to the ground; ∑ ∑
∈ ∈

−
il il

lili Bui j  is the current in 

loading branch connected to bus i . From (1), we have 
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Similar equations can be derived for node j . The 
impedance branch is 

)()j( jiijijl uuXRi 

 −−=+       (3) 

which can be extended to 

0

0

=−++

=−+−
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a
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ffRiXi

eeXiRi
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from which we have 
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Equation (2) and (4) formulate the augmented network 
equations in rectangular coordination, where the status 
parameters are composed of the branch currents and nodal 
voltages. 

III. ANALYSIS OF BOUNDARY CONDITIONS FOR SADDLE NODE 
BIFURCATION 

Letting ∑
∈

=
il

a
li ix , ∑

∈

=
il

r
li iy , and ∑

∈

=
il

li BB 0 , we 

have following equations for PQ nodes according to (2): 
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These are explicit expressions for the nodal voltage in 
terms of the branch currents. From (6), when the condition 

22
00

22 22 iiiiiii qpBqByx ++≥+             (7) 

is satisfied, the real solution to power flow equations exists. As 
demonstrated in Fig. 3 where the horizontal axis represents the 
real part of the current through loading branch whereas the 
vertical axis represents the imaginary part, we can conclude 
that 1) when the squared magnitude of the nodal injected 
current lies outside the circle with the origin being the center 

and the radius being )(2 22
0 iiii qpqB ++ , e.g., point 

b , only the symbol “>” in (7) holds. In this case there is only 
high voltage solution and the system is stable. 2) When only 

the symbol “<” holds in (7), i.e., the squared magnitude of the 
nodal injected current lies within the circle with the origin 
being the center and the radius being 

)(2 22
0 iiii qpqB ++ , e.g., point k , no real solution 

exists and the system is unstable. 3) When the symbol “=” 
holds in (7), there is a unique solution on the circle, e.g., point 
a ; the boundary of the voltage stability is achieved. The 
critical point of voltage stability can be found by solving the 
operating status for the system.  

Many points (e.g., points a  and 'a ) on the critical circle 
correspond to bus b , but there is only one which is closest to 
b . This point represents the minimum loading margin at bus 
b . If the loading margin at bus b  is the minimum of all buses, 
then this point represents the minimum loading margin of the 
system. Therefore, one of the major purposes of this paper is to 
find the point on the critical circle which is closest to point b . 

 

Fig. 3. Critical circle for nodal voltage 

In power system analysis, buses type incorporates PU-node 
and slack bus as well. The voltage at the slack bus is known, 
while for PU-node, the reactive equation in (2) can be replaced 
by 

222
iii Ufe =+                                 (8) 

where iU  is the magnitude of voltage at bus i . Thus 
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Similarly, only when 

2

2
22

i

i
ii V

p
yx ≥+                              (10) 

is satisfied, do the solution to network equations exist. In this 
case, there is a circle with radius ii Vp /  and center at the 
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origin as well. The system is unstable within this circle 
therefore this circle is termed as “voltage instability circle”. 
When the symbol “=” in (10) holds, the equation has a unique 
solution and the system reaches the boundary of voltage 
stability. 

When the symbol “=” in (7) or (10) holds, the two solution 
curves of high and low voltage overlap, i.e., saddle node 
bifurcation occurs. Suppose the number of PQ-node is LN , 
the number of PU-node is GN , and the number of slack bus is 

SN , we have SGL NNNN −=+ . The condition for the 
occurrence of saddle node bifurcation at PQ-node is 

Liiiiii NiqpqByx ∈++=+ )(2 22
0

22        (11) 

while for PU-node is 

G
i

i
ii Ni

V
p

yx ∈=+ 2

2
22                      (12) 

Here, (11) together with (12) is named as characteristic 
equation for saddle node bifurcation. Therefore, either (11) or 
(12) at any bus holds, saddle node bifurcation occurs. That is to 
say, the occurrence of saddle node bifurcation corresponds to 
the critical condition for the existence of the solution to electric 
power network equations. 

IV. DISTANCE EQUATION REPRESENTING MINIMUM LOADING 
MARGIN OF SYSTEM 

It can be observed from Fig. 3 that if the line connected by 
any point b  outside the voltage instability circle and the center 
intersects the circle boundary at points a  and c , then these 
points are SNBPs on the critical circle corresponding to node 
b . In this case, the tangent lines passing through points a  and 
c , 1l  and 2l  (which are parallel to each other), are 
perpendicular to the normal passing through the center and 
points a , b , and c , 3l . It can be proved from the geometric 
perspective that ab  is the shortest distance from point b  to 
the circle whereas cb  is the longest one, as shown in Fig. 4. 
Therefore, if we know the representative functions of 1l , 2l , 
and 3l , we can derive the function representing the distance 
between loading point b  and point a  taking advantage of the 
perpendicular relationship.  

The function for the tangent lines passing through points a  
and c , 1l  and 2l , can be derived from (11): 

L
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222

0 )(2
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  (13) 

where aα  is the angle of the tangent lines passing through 
points a  and c . For PU-node, we have 
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a
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2

2
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Fig. 4. Minimum Loading Distance 

The function for the normal 3l  is 

b

b
b x

y
=βtan                                 (15) 

where bβ  is the angle of the normal passing through the center 

and points a , b , and c . Since 90+= ba βα , the distance 
equation for PQ-node can be formulated as 

L
b

b

a

aaaaa Nba
x
y

x
xqpqB
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−++

,
)(2 222

0
         

(16) 

Similarly, the distance equation for PU-node is 

G
b

b

a

a
a

a

Nba
x
y

x

x
V
p

∈=

−

,

2
2

2

                  (17) 

where by  and bx  can be derived from (5). 

Because the initial state of the given system is stable the 
power flow calculation is convergence at point b , i.e., the 
right side of the (16) and (17) is known through the calculation 
of (15) at the initial conditions. The system reaches unstable on 
the critical circle of node voltage and the power flow 
calculation is not convergent, so the points on the critical circle 
is exactly what we're going to get. The geometric meaning of 
distance (16) and (17) expresses the recent distance between 
node b  and the critical circle, also specifies the direction that 
the node b  achieves to the closest point a  on the critical 
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circle, so the ab  represents the minimum loading margin of 
the power system. 

V. SOLUTION TECHNIQUE 
It is infeasible to use the classic Newton method to solve 

the power for the SNBP a  on the critical circle corresponding 
to node b  shown in Fig. 4 because the Jacobian matrix in this 
case is singular and therefore the power flow does not 
converge. By removing node b  which makes the Jacobian 
matrix singular from the nodal voltage equation, we have the 
nodal voltage equations with one dimension reduced. 
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where )( LG NNi +∈  and bi ≠  with Ll ∈ . For point a , 
we have 
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where (18) are electric power network equations. Equation (19) 
is the boundary characteristic equations for SNBP and distance 
equations. When calculating, we plug the critical nodal voltage 
of (19) in branch current (18), combine the boundary 
characteristic equation of the node and distance, and formulate 
the Jacobian matrix of the nodal voltage equation, whose 
dimension is reduced by one comparing with the original one. 

From the calculation we have aa qp , , therefore 

aaaaa pPorqpS =+= 22                    (20) 

aS  or aP  represents the parametric conditions for saddle 
node bifurcation boundary, i.e., the boundary of the static 
voltage stability at bus b . After obtaining ap  and aq  at point 
a , we can determine the direction in which the minimum 
loading margin at bus b  varies as follows: 

ba

ba
b PP

QQ
−
−

= arctanδ                        (21) 

where bδ  is the angle with which the loading at bus b  
changes. The minimum loading margin is determined by 
Euclidean distance as follows: 

( ) ( )22
abababb QQPPSS −+−=−=η    (22) 

There are two solutions, representing the nearest point a  
and the farthest point c , resp. bη  is used to judge which one 
is minimal. 

For the system shown in Fig. 4, when using equation sets 
(18) and (19) to calculate the minimum loading margin at all 
buses of a power system, we take the following steps: 

1)Arbitrarily given bus b  in the system, by  and bx  are 

calculated from (5) (for PU-node, bq  is calculated from the 
reactive equations in (2)) taking advantage of the power flow 
results given by conventional Newton method or the real-time 
data measured by automatic systems. They will be served as 
the basic data for determining the normal 3l  afterwards. 

2)Given initial values of nodal voltage iu
⋅

 and branch 

current li
⋅

. 

3)To determine the critical point a , the iterative equations 
with nodal voltage and branch current being the status 
variables are formulated according to (18) or (19), the Jacobian 
matrix reduced by one dimension is constructed, and the 
problem is iteratively solved by Newton method. 

4)Using the calculated value of critical point a , the 
direction and value of the system’s minimum loading margin 
can be calculated from (21) and (22), meanwhile the boundary 
conditions under which the system bifurcates can be 
determined by (20). 

VI. CASE STUDIES 
The proposed method is validated by IEEE 118-bus test 

system with slack bus #69 and bus #118 exchanged. Tab. 1 
presents the results of the minimum loading margin at some 
nodes with respect to the saddle node bifurcation boundary. 
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Tab. 2 presents the loading margin on the critical circle for 
different power factor angles at the same bus. Only the 
representative results are shown in Table 1 and Tab. 2. 

TABLE I.  RESULTS OF MINIMUM LOADING MARGIN FOR IEEE 118-
BUS TEST SYSTEM(P.U.) 

No. bp
 bq

 ap
 aq

 bδ
 bη

 
4 0.700 0.710 1.982 1.098 16.84 1.339 
8 0.400 -0.445 2.221 0.966 37.77 2.304 

11 0.700 0.230 2.090 0.838 23.63 1.517 
14 0.140 0.010 2.471 1.128 25.62 2.585 
15 0.780 0.273 1.892 1.011 33.57 1.335 
21 0.140 0.080 2.360 1.033 23.23 2.416 
27 0.700 -0.228 1.994 1.110 45.96 1.861 
32 0.390 0.570 2.226 1.094 15.93 1.909 
42 0.980 -0.170 1.559 0.689 56.02 1.036 
44 0.160 0.080 1.871 0.774 22.08 1.846 
52 0.180 0.050 1.911 0.779 22.84 1.878 
59 1.220 0.361 1.613 0.883 53.02 0.653 
90 1.630 -0.271 2.219 1.187 68.00 1.572 

105 0.210 0.416 2.006 1.163 22.58 1.945 
108 0.020 0.010 2.490 1.058 22.99 2.683 
112 0.680 -0.285 2.488 1.212 39.62 2.347 

TABLE II.  RESULTS OF DIFFERENT DIRECTION IN WHICH LOAD 
INCREASES(P.U.) 

No. bδ
 ap

 aq
 bη

 
a 56.00 1.559 0.689 1.036 
c 32.00 3.887 1.669 3.440 
d 37.00 2.590 1.060 2.026 
e 48.00 1.782 0.733 1.208 
f 33.00 3.221 1.320 2.691 
n 48.00 1.844 0.779 1.283 
g 39.00 2.872 1.333 2.416 
h 51.00 2.382 1.554 2.222 
We can observe from Tab. 1 that SNBPs, and therefore the 

value and direction of the minimum loading margin, can be 
determined for different buses in the system. However, the 
loading margins of different buses are different from each 
other. For instance, bus #59 has a relatively smaller minimum 
loading margin whereas bus #108 has a larger one. The reason 
is that #59 initially undertakes a heavier load and it locates in a 
heavily-loaded area, which leads to a relatively smaller power 
of the critical point at saddle node bifurcation. Therefore the 
distance between bus #59 and the critical voltage circle is 
closer and the loading margin is smaller. On the contrary, the 
loading margin at bus #108 is larger. 

Taking bus #42 as an example, Tab. 2 shows the results for 
different points on nodal critical voltage circle under different 

bδ  and the situation that the system’s operating condition 
satisfies the boundary characteristic equation for saddle node 
bifurcation. In this case, equation sets (18) and (19) do not 
contain boundary distance (16) or (17). Initial load undertaken 
by the bus is 980.0=bp  and 170.0−=bq . 

When the value of bδ  is given, the direction in which the 

load at bus b  varies and the location where bus b  is at the 
critical voltage circle can be determined. The observation can 

be made from Tab. 2 and Fig. 5 that if the load at the same bus 
increases in different directions, then different SNBPs will be 
achieved. The intersection points of the circle and the line 
passing through bus b  and the center form the shortest 

distance ab  and the longest distance cb . The closest SNBP 
a  can be taken as the criteria for evaluating the minimum 
loading margin of the system whereas the farthest SNBP c  can 
be taken as the criteria for planning generation or managing 
demand-side load. 

 

Fig. 5. Loading Margin in Different Directions in Which Load Increases  

Tab. 3 compares the method proposed in this paper, 
Continuation Power Flow, and Genetic Algorithm for 
determining the minimum loading margin, taking bus #21 as an 
example. From the results we can see that the proposed method 
gets a higher precision. 

TABLE III. COMPARISON OF DIFFERENT METHODS(P.U.) 

 Proposed 
Method 

Continuation 
Power Flow 

Genetic 
Algorithm 

bδ
 

23.23 24.51 24.39 

bη
 

2.416 2.431 2.423 

VII. CONCLUSIONS  
The value of a power system’s minimum loading margin 

and the direction in which it changes are determined by the 
equation sets composed of the boundary characteristic equation 
for the saddle node bifurcation and the distance equation for 
minimal load. The simulation results demonstrate that: 

1) The proposed method can be applied to determining the 
minimum loading margin and analyzing the boundary margin 
for static voltage stability.  

2) A power system’s loading margin is affected by the 
initial loads at each bus and the load density within the area 
which the system covers. Therefore, various situations should 
be comprehensive considered while regulating the load. 

3) The derived expression for equilibrium solution and 
boundary equation for SNBP give an insight to the critical 
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conditions for voltage stability. They can be applied to other 
research areas in power system analysis as well. 
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